

Glyco**YELLOW**™-β*Gal*

Table 1. Product information

Catalog No.	Material	Amount	Storage	Stability
GC601	Glyco Yellow ™-β <i>Gal</i>	50μg × 10 vials	Store under -20 °C, desiccate and protect from light Unrecommend storing DMSO solution of dye	1 year (unopened)

1. Introduction

About β-Galactosidase detection probe

Glyco**YELLOW™**-β*Gal* is a fluorescent probe for specific detection of β-galactosidase. It can be applied to fluorescent

imaging and selection of cell and tissue transfected with *lacZ*.

Because Glyco**YELLOW**^M- β *Gal* is almost non-fluorescent in the absence of β -galactosidase, this probe exhibits good S/N ratio.

Figure 1. Mechanism of fluorescent generation of Glyco**YELLOW™**-β*Gal*

■ Glyco**YELLOW™**-β*Gal* suitable for...

- ➤ Gene analysis by fluorescent imaging.
- > Monitoring transfection efficiency and live cell imaging of transfected cell.
- ➤ Study on promoter or enhancer.

2. Live cell staining protocol with GlycoYELLOW[™]-βGal

Materials Required but not Provided

- Dimethylsulfoxide (DMSO), dehydraeted
- Hank's Balanced Salt Solution (HBSS)

Preparation of Reagent and Cell Staining

- 1. To prepare a stock solution, dissolve the Glyco**YELLOW**[™]-β*Gal* 50 µg in 93.3 µL of DMSO to 1 mM.
- 2. Dilute an aliquot of stock solution with HBSS to a final concentration of 5 μ M (staining solution).
- 3. Remove the culture medium from cell culture dish and wash with HBSS.

Caution : Glass bottom dish etc. are recommended as cell culture dish, because it shows a low autofluorescence.

- 4. Add stain solution to the dish and incubate for 30 minutes at 37 °C, 5 % CO₂.
- 5. After staining, remove the stain solution from the dish and wash 2 or 3 times with HBSS. Replace to HBSS buffer and observe the fluorescence using a fluorescence microscopy.

Fluorescence Imaging

488 or 514 nm is suited for excitation wavelength. B-2A, FITC, Cy3 (Nikon Co. Ltd.) or U-FBWA, U-FBNA, U-FGW, U-FGWA (Olympus Co. Ltd.) etc. are usable. The wavelength of maximum emission is around 547 nm.

Table 2.	Fluorescence	property	y of Glv	yco YELLOW ™-	βGal
				/	

	Abs max	Flu max
Glyco YELLOW ™-β <i>Gal</i>	525 nm *	547 nm

* Excitation by 488nm laser is also possible.

Reference

1. Mako Kamiya, Daisuke Asanuma, Erina Kuranaga, Asuka Takeishi, Masayo Sakabe, Masayuki Miura, Tetsuo Nagano, and Yasuteru Urano *J. Am. Chem. Soc.* 2011, 133, 12960-12963

*Glyco**YELLOW**^m- β *Gal* indicates HMDER- β Gal in the paper.