

For research use only

Updated: 25 September 2019

HYDROPTM, HYDROP-EXTM

Table 1. Product information

Catalog no.	Material	Amount	Storage upon receipt	Stability
GC3007-01	HYDROP	30 nmol × 3	≤–20°C, keep	1 year (when unopened
GC3008-01	HYDROP-EX	30 nmol × 3	desiccated and protected from light.	and stored as described.)

1. About HYDROP and HYDROP-EX

HYDROP and HYDROP-EX are fluorescent probes to specifically detect hydrogen peroxide (H_2O_2) , one of the reactive oxygen species (ROS). These are initially non-fluorescent but fluoresce upon reaction with hydrogen peroxide in physiological conditions.

HYDROP is a probe to specifically detect intracellular H_2O_2 . It is diacetylated and highly cell-permeable, but not

reactive to H_2O_2 before entering into cells. After hydrolysis of diacetyl groups by intracellular esterases, it becomes highly reactive to H_2O_2 .

Cell impermeable HYDROP-EX is suitable to detect or quantify extracellular H_2O_2 or that in solutions

Figure 1. Absorbance of 10 μ M HYDROP-EX (*left*) and fluorescence of 0.5 μ M HYDROP-EX (*right*) in 0.1 M phosphate buffer (pH=7.4).

■ Storage

Probes are shipped at room temperature in a nitrogen gasfilled vial. Upon receipt, store the product desiccated and protected from light at ≤ -20 °C. Storing the reagent as a solution is not recommended.

2. Preparation of reagents

Prepare N,N-dimethylformamide (DMF) as a solvent.

HYDROP is a colorless solid, HYDROP-EX is an orange-colored solid. Before opening the cap, warm the vial to the room temperature and use micro-centrifuge to spin down the solid that might be adhered on the cap. Add 30 μL of DMF to one vial to prepare 1 mM solution. Dissolve the solid completely by pipetting for more than five times. HYDROP solution will be colorless, whereas HYDROP-EX solution will be orange.

3. Quantification of H₂O₂ in solutions using HYDROP-EX

- 1. Prepare hydrogen peroxide (H_2O_2) solutions to generate a standard curve. Commercially available 30-35% H_2O_2 solution is about 10 M. Dilute the solution 1000 times with pure water and measure absorbance at 240 nm (A240).
- 2. Concentration of the H_2O_2 can be obtained by the equation: $C = A240 / \varepsilon \times \text{dilution factor (M)}$, whereas $\varepsilon = 43.6 \text{ (M}^{-1}\text{cm}^{-1})$ is the molar extinction coefficient of H_2O_2 .
- 3. Dilute the H_2O_2 to the final concentration of 0–100 μ M using a solution. The diluting solution condition should be equivalent to that in which you measure H_2O_2 concentrations. Add HYDROP-EX to final concentration of 1–10 μ M, react at 37°C for 1 hour. These concentrations and reaction conditions should be adjusted to the expected conditions to be measured.
- 4. Measure fluorescence intensities using a fluorescence spectrometer or a fluorescence microplate reader. Before the measurement, dilute the solution to make the final HYDROP-EX concentration to be <1 μM , or absorbance of the solution at 490 nm should be less than 0.1. We recommend to set the excitation wavelength within 470–490 nm and emission wavelength to be 520–530 nm.
- 5. Plot the measured fluorescence intensity (I) against H_2O_2 concentration (C) and fit using the following equation,

$$I = \frac{aC}{k - C} + b$$

to obtain the parameters, a, b, and k.

- Add the same concentration of HYDROP-EX to the solution you would like to measure, mix well and incubate in the same conditions (temperature and time). After the incubation, measure fluorescence.
- 7. Obtain H_2O_2 concentrations using the following equation,

$$C = \frac{I - b}{I + a - b}k$$

Fig. 2. An example standard curve of HYDROP-EX.

4. Detection of intracellular H₂O₂ with HYDROP

- 1. Dilute the 1 mM HYDROP solution with observation buffer or culture media to 1–5 μ M (Cell staining solution).
 - We recommend to optimize the dye concentration and the incubation time. In GORYO Chemical, incubation in 5 μM dye at 37°C for 20 min gave good results for HeLa cells (human cervical cancer cell line), A431 cells (human epidermis carcinoma cell line), and 1 μM dye at 37°C for 20 min for RAW276.4 cells (mouse macrophage-like cell lines).
- 2. Remove the culture medium on the dish and wash twice with the observation buffer or the culture medium.
- 3. Add the cell staining solution to the dish and incubate at 37°C for 20 min.
- 4. After the staining, wash 2 times with the observation buffer.
- Induce the production of hydrogen peroxide by the addition of PMA and start microscope observation.
 A dose response curve with PMA and vehicle (blank/control solution without PMA) is recommended.
 - We detected the fluorescence signal by microscope observation, 30 min after stimulation.

■ Fluorescence observation

Use 488 nm blue light for excitation. Maximum emission is observed at 516 nm. For fluorescence microscopy, blue-excitation filter sets for GFP or FITC is appropriate.

Table 2. Related Products

Catalog no.	Material	Usage	
SK3001-1 SK3001-2	HPF	Specific fluorescence probe to detect hydroxyl radical (OH) and peroxynitrite (ONOO-).	
SK3002-01 SK3002-02	APF	Specific fluorescence probe to detect hydroxyl radical (OH), peroxynitrite (ONOO-) and hypochlorous acid (HCIO).	
SK3003-01	NiSPY-3	Specific fluorescence probe to detect only peroxynitrite (ONOO ⁻).	
GC3006-01	HySOx	Specific fluorescence probe to detect only hypochlorous acid (HCIO).	
GC301	AcidiFluor™ ORANGE	A fluorescence probe to detect acidic organelles in living cells	
GC901	FeRhoNox [™] -1	A fluorescence probe to detect ferrous ion (Fe ²⁺) in Golgi.	
A401-1	QuicGSH3.0	Quantification of intracellular glutathione.	

TEL: +81-11-624-5860 https://goryochemical.com/