MetalloFluor™ Series


[Labile ferrous ion detecting probe]

570-590 nm:Orange

FeRhoNox-1 is a fluorescent probe for the detection of iron (II). Because of its high specificity, it can be used to detect intracellular Fe2+. This probe tends to be localized localized in Golgi, and reacts selectively with Fe2+.


Available through Merck KGaA (Darmstadt, Germany) as:
SCT030 BioTracker™ 575 Red Fe2+ Dye



Code No. Product Name Size Merck CAT No. Merck ( Millipore / Sigma Aldrich )
Product Name
GC901 FeRhoNox™-1 50 μg × 10 SCT030 BioTracker 575 Red Fe2+ Dye
(日本語) AR2901-U5(10/1より) (日本語) FeRhoNox™-1 (日本語) 50 μg × 5


  • Protocol

  • SDS

  • Product Information


    Propertities of FeRhoNox-1

    Product Target Cell permeability reactivity  Absmax (nm) FLmax (nm)
    FeRhoNox-1 Labile irons  (Fe2+ Yes Irreversible 540 575


    Fluorescence spectra

    Figure 1. Response of FeRhoNox-1 to iron(Ⅱ)ion.

    Reacting FeRhoNox-1 with Fe2+ for 1 h at 37℃, peak of the fluorescence  appears around 575 nm.


    Metal Ions Reaction Specificity

    Figure 2. The selectivity of FeRhoNox-1.

    FeRhoNox-1 can react with only Fe2+ selectively.


  • Cell imaging example using FeRhoNox-1


    Cell imaging example using FeRhoNox-1

    HepG2 cells

    Live cell imaging of HepG2 cells using FeRhoNox-1   (1) -Fe(II): cells without addition of ferrous ions (100μM ferrous ammonium sulfate)   (2) +Fe(II): cells with loaded ferrous ions   (3) +Fe(II)+Bpy: further, iron chelator, Bpy was added.

    Fluorescence increase was observed in (2), whereas it was decreased in (3). This results is consistent with that FeRhoNox-1 specifically detects Fe(II).



    Live cell imaging of HEK293 cells using FeRhoNox-1   (1) -Fe(II): cells without addition of ferrous ions (100μM ferrous ammonium sulfate)   (2) +Fe(II): cells with loaded ferrous ions   (3) +Fe(II)+Bpy: further, iron chelator, Bpy was added.


    Detection of physiological level of Fe(II).

    Detection of intrinsic ferrous ions. Since fluorescent signal was decreased in (2) Bpy addition, fluorescent signal in (1) represents intrinsic physiological level of ferrous ions.


    *Bpy: 2,20-bipyridyl (Bpy) is a cell permeable ferrous ion chelator.


  • Q Can I apply FeRhoNox-1 to the fixed cells?

    You cannot use for paraffin slices.
    To detect Fe2+ ions in tissues, you may prepare frozen section with quick fixation with formaldehyde. Refer the following paper:
    Mukaide et al., (2014) Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model
    Free Radical Research 48:990-995

  • Q How to choose organic solvent for FeRhoNox-1?

    We recommend to use dimethyl sulfoxide (DMSO) as the solvent for FeRhoNox-1. Among DMSO, we strongly recommend to use “infinity pure” or “ultra-pure”grade and use freshly opened solvent. You may store aliquots of DMSO at -80 oC and avoid adsorption of humid. Avoid to use with dgradated DMSO, which can increase the background signal of FeRhoNox-1. 


  • Q Does the probe only detects Fe2+ in Golgi/ER?

    The probes are known to be localized either in Golgi or in ER, however,  it has been considered that they also detect Fe2+ in the cytoplasmic pool. Please note that the definitive evaluation for this point has not been reported, yet. 

  • Q Which of the ferrous detecting reagents is the most appropriate for my purpose?

    FerroOrange is the most sensitive probe for ferrous ions. In contrast, FerroFarRed is suitable for flow cytometry with red laser.
    Regarding the number of the publications, FeRhoNox-1 (RhoNox-1) might be the best to reproduce experiments.

    Code Number Product Name Exmax (nm) Emmax (nm) Microscopy Flow cytometry
    (blue laser)
    Flow cytometry
    (red laser)
    Plate reader
    GC901 FeRhoNox-1 540 575
    GC903 FerroFarRed 646 662
    GC904 FerroOrange 542 572

    We recommend to use a green laser (ex. 532 nm) to excite FeRhoNox-1 or FerroOrange.

  • Q My question is not in this FAQ list.....


T. Homma, S. Kobayashi, J. Fujii (2022)
Cells 11:1603 DOI: 10.3390/cells11101603

Z. Huang, J. Han, P. Wu, C. Wu, Y. Fan, L. Zhao, X. Hao, D. Chen, M. Zhu (2022)
Oxid. Med. Cell. Longev. Article ID 5463134 DOI: 10.1155/2022/5463134

C. Chen, J. Chen, Y. Wang, Z. Liu, Y. Wu (2021)
J. Biol. Chem. 296:100187  DOI: 10.1074/jbc.RA120.015779

Y. Li, X. Zeng, D. Lu, M. Yin, M. Shan, Y. Gao (2021)
Hum. Reprod. 36:951-964 DOI: 10.1093/humrep/deaa363

S. Xu, H. Zheng, R. Ma, D. Wu, Y. Pan, C. Yin, M. Gao, W. Wang, W. Li, S. Liu, Z. Chai,  R. Li (2020)
Nat. Commun. 11: 3484 DOI: 10.1038/s41467-020-17300-7

Y. Gu, J. Chen, H. Zhang, Z. Shen, H. Liu, S. Lv, X. Yu, D. Zhang, X. Ding, X. Zhang (2020)
FASEB J. 34:11474-11487 DOI: 10.1096/fj.201902957RR

M. J. Smith, M. Fowler, R. J. Naftalin, R. C.M. Siow (2020)
Free Radic. Biol. Med. 155: 49-57 DOI: 10.1016/j.freeradbiomed.2020.04.024

S. Xu, H. Zheng, R. Ma, D. Wu, Y. Pan, C. Yin, M. Gao, W. Wang, W. Li, S. Liu, Z. Chai,  R. Li (2020)
Nat. Commun. 11: 3484 DOI: 10.1038/s41467-020-17300-7

Y. Tabei, H. Fukui, A. Nishioki, Y. Hagiwara, K. Sato, T. Yoneda, T. Koyama, M. Horie (2019)
Sci. Rep. 9: 2224-2236 DOI: 10.1038/s41598-019-38598-4

L. Zhao, T. Bartnikas, X. Chu, J. Klein, C. Yun, S. Srinivasan, P. He (2019)
FASEB J. 33: 3549–3561 DOI: 10.1096/fj.201801855R

B. Hassannia, B. Wiernicki, I. Ingold, F. Qu, S. V. Herck, Y. Y. Tyurina, H. Bayır, B. A. Abhari, J. P. F. Angeli, S. M. Choi, E. Meul, K. Heyninck, K. Declerck, C. S. Chirumamilla, M. Lahtela-Kakkonen, G. V. Camp, D. V. Krysko, P. G. Ekert, S. Fulda, B. G. D. Geest, M. Conrad, V. E. Kagan, W. V. Berghe, P. Vandenabeele, T. V. Berghe (2018)
J. Clin. Invest. 128: 3341-3355 DOI:10.1172/JCI99032

N. D. Rocasolano, O. MartíSistac, J. Ponce, M. C. Ruiz, M. Millán, V. Guirao, I. G. Yébenes, J. B. Salom, P. R. Cabrer, E. Alborch, I. Lizasoain, J. Castillo, A. Dávalos, T. Gasull (2018)
Redox Biol. 15: 143-158 DOI:10.1016/j.redox.2017.11.026

K. Totsuka, T. Ueta, T. Uchida, M. F. Roggia, S. Nakagawa, D. G. Vavvas, M. Honjo, M. Aihara (2018)
Exp. Eye Res. (In Press) DOI:10.1016/j.exer.2018.08.019

T. Ohara, Y. Tomono, X. Boyi, S. Yingfu, K. Omori, A. Matsukawa (2018)
Oncotarget 9: 32751–32760 DOI:10.18632/oncotarget.25973

K. Chaudhary, W. Promsote, S. Ananth, R. Veeranan-Karmegam, A. Tawfik, P. Arjunan, P. Martin, S. B. Smith, M. Thangaraju, O. Kisselev, V. Ganapathy, J. Gnana-Prakasam (2018)
Sci. Rep. 8: Article number: 3025 DOI:10.1038/s41598-018-21276-2

A. T. Aron, A. G. Reeves, C. J. Chang. (2018)
Curr. Opin. Chem. Biol. 43: 113-118 DOI:10.1016/j.cbpa.2017.12.010

K. Oshima, Y. Ikeda, Y. Horinouchi, H. Watanabe, H. Hamano, Y. Kihira, S. Kishi, Y. Izawa-Ishizawa, L. Miyamoto, T. Hirayama, H. Nagasawa, K. Ishizawa, K. Tsuchiya, T. Tamaki (2017)
Lab. Invest. 97: 555-566 DOI:10.1038/labinvest.2017.11

F. Ito, T. Nishiyama, L. Shi, M. Mori, T. Hirayama, H. Nagasawa, H. Yasui, S. Toyokuni (2016)
Biochem. Biophys. Res. Commun. 476: 600-606 DOI:10.1016/j.bbrc.2016.06.003

K. Yama, K. Sato, Y. Murao, R. Tatsunami, Y. Tampo (2016)
Biol. Pharm. Bull. 39: 1523-1530 DOI:10.1248/bpb.b16-00332

Y. Kamihara, K. Takada, T. Sato, Y. Kawano, K. Murase, Y. Arihara, S. Kikuch, N. Hayasaka, M. Usami, S. Iyama, K. Miyanishi, Y. Sato, M. Kobune, J. Kato (2016)
Oncotarget 7: 64330-64341 DOI:10.18632/oncotarget.11830

Y. Wang, Y. Okazaki, L. Shi, H. Kohda, M. Tanaka, K. Taki, T. Nishioka, T. Hirayama, H. Nagasawa, Y. Yamashita, S. Toyokuni (2015)
Cancer Sci. 107: 250-257 DOI:10.1111/cas.12865

T. Mukaide, Y. Hattori, N. Misawa, S. Funahashi, L. Jiang, T. Hirayama, H. Nagasawa, S. Toyokuni (2014)
Free Radic. Res. 48: 990-995 DOI:10.3109/10715762.2014.898844

T. Imamura, T. Hirayama, K. Tsuruma, M. Shimazawa, H. Nagasawa, H. Hara (2014)
Exp. Eye Res. 129: 24-30 DOI:10.1016/j.exer.2014.10.019

T. Hirayama, K. Okuda, H. Nagasawa (2013)
Chem. Sci. 4: 1250-1256 DOI:10.1039/C2SC21649C